J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

SYJC TEST - 03 - SET 2

DURATION - $1^{1}/_{2}$ HR

MARKS - 40

TOPIC : DIFFERENTIATION + RATIO - PROPORTION + PARTNERSHIP + COMMERCIAL ARITHMETIC (PART)

$$\frac{dy}{dx} = \frac{3}{1+9x^2} + \frac{2}{1+4x^2}$$

$$03. \quad y = \tan^{-1} \left(\frac{1-\cos x}{\sin x}\right) \text{ Find } dy/dx$$

$$Solution$$

$$y = \tan^{-1} \left(\frac{2\sin^2 x/2}{2\sin^2 (2\cos^2 x/2)}\right)$$

$$y = \tan^{-1} \left(\frac{\sin^2 (2\cos^2 x/2)}{\cos^2 (2\cos^2 x/2)}\right)$$

$$y = \tan^{-1} (\tan^2 (2\cos^2 x/2))$$

$$y = \frac{x}{2}$$

$$\frac{dy}{dx} = \frac{1}{2}$$

04. $y = x^{\tan^{-1} x}$ Find dy/dx

Solution

Taking log on both sides

$$Log y = tan^{-1}x \cdot log x$$

Differentiating wrt x

$$\frac{1}{y} \frac{dy}{dx} = \tan^{-1}x. \quad \frac{d}{dx} \log x + \log x \quad \frac{d}{dx} \tan^{-1}x$$

$$\frac{1}{y} \frac{dy}{dx} = \tan^{-1}x. \quad \frac{1}{x} + \log x \quad \frac{1}{1 + x^2}$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{\tan^{-1}x}{x} + \frac{\log x}{1 + x^2}$$

$$\frac{dy}{dx} = y \left(\frac{\tan^{-1}x}{x} + \frac{\log x}{1 + x^2}\right)$$

$$\frac{dy}{dx} = x^{\tan^{-1}x} \left(\frac{\tan^{-1}x}{x} + \frac{\log x}{1 + x^2}\right)$$

G2. Attempt any TWO of the following (3 marks each)
11.
$$x^2y^k = (x + y)^{2+k}$$
. Show that $: \frac{dy}{dx} = \frac{y}{x}$
Solution :
Taking log on both sides
2 log $x + k \log y = (2 + k) \log (x + y)$
Differentiating wrt x
2 $\frac{1}{x} + k \frac{1}{y} \frac{dy}{dx} = \frac{2 + k}{x + y} \frac{1}{dx} (x + y)$
 $\frac{2}{x} + \frac{k}{y} \frac{dy}{dx} = \frac{2 + k}{x + y} (1 + \frac{dy}{dx})$
 $\frac{2}{x} + \frac{k}{y} \frac{dy}{dx} = \frac{2 + k}{x + y} + \frac{2 + k}{x + y} \frac{dy}{dx}$
 $\frac{2}{x} + \frac{k}{y} \frac{dy}{dx} = \frac{2 + k}{x + y} + \frac{2 + k}{x + y} \frac{dy}{dx}$
 $\frac{k}{x - \frac{2y}{y}} \frac{dy}{dx} = \frac{k}{x - \frac{1}{x}} \frac{2}{\sqrt{y}}$
50. 1 (marks)
62. $y = (\tan x)^x$ Find dy/dx
50. 1 (marks)
63. $y = (\tan x)^x$ Find dy/dx
50. 1 (marks)
64. $y = (\tan x)^x$ Find dy/dx
50. 1 (marks)
65. $y = (\tan x)^x$ Find dy/dx
50. 1 (marks)
67. $y = (\tan x)^x$ Find dy/dx
50. 1 (marks)
67. $y = (\tan x)^x$ Find dy/dx
50. 1 (marks)
1 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\tan x} \frac{d}{dx} \tan x + \log(\tan x) \frac{d}{dx} x$
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\tan x} \frac{d}{\sin x} \frac{1}{\cos^2 x} + \log(\tan x)$. 1
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\sin x} \frac{1}{\cos x} \frac{1}{x} + \log(\tan x)$
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\sin x} \frac{1}{\cos x} + \log(\tan x)$
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\sin x + \cos x} + \log(\tan x)$
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\sin x} \frac{1}{\cos x} + \log(\tan x)$
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\sin x} \frac{1}{\cos x} + \log(\tan x)$
 $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\sin x} \frac{1}{\cos x} + \log(\tan x)$
 $\frac{dy}{dx} = (\tan x)^3 \frac{2x}{\sin 2x} + \log(\tan x)$
 $\frac{dy}{dx} = (\tan x)^3 \frac{2x}{\sin 2x} + \log(\tan x)$

03.
$$x^{y} = e^{x}$$
 Show that : $\frac{dy}{dx} = \frac{\log x - 1}{(\log x)^{2}}$
Solution
 $x^{y} = e^{x}$
Taking log on both sides
 $y \cdot \log x = x \cdot \log e$
 $y \cdot \log x = x$
 $y = \frac{x}{\log x}$
 $y = \frac{x}{\log x}$
Continuation
9. $(4 \text{ marks each)$
9. $(4 \text{ m$

02. log
$$\left(\frac{x^4 - y^4}{x^4 + y^4}\right) = k$$
 Show that : $\frac{dy}{dx} = \frac{y}{x}$

Solution

$$\log \frac{x^{4} - y^{4}}{x^{4} + y^{4}} = k$$

$$\frac{x^{4} - y^{4}}{x^{4} + y^{4}} = e^{k}$$

$$\frac{x^{4} - y^{4}}{x^{4} + y^{4}} = m$$

$$x^{4} - y^{4} = m(x^{4} + y^{4})$$

$$x^{4} - y^{4} = mx^{4} + my^{4}$$

$$x^{4} - mx^{4} = y^{4} + my^{4}$$

$$x^{4} (1 - m) = y^{4} (1 + m)$$

$$y^{4} = x^{4} \frac{1 - m}{1 + m} \dots \dots (1)$$

Differentiating wrt x

$$4y^{3} \quad \frac{dy}{dx} = 4x^{3} \quad \frac{1-m}{1+m}$$

$$\frac{dy}{dx} = \frac{x^{3}}{y^{3}} \quad \frac{1-m}{1+m}$$

$$\frac{dy}{dx} = \frac{x^{3}}{y^{3}} \quad \frac{y^{4}}{x^{4}} \qquad \dots \dots \text{ from (1)}$$

$$\frac{dy}{dx} = \frac{y}{x}$$

03. $y = \tan^{-1} (\sec x + \tan x)$. Find dy/dx Solution

$$y = \tan^{-1} \qquad \left(\frac{1 + \sin x}{\cos x}\right)$$

$$y = \tan^{-1} \left(\frac{\cos^2 x_{/2} + \sin^2 x_{/2} + 2\sin x_{/2} \cdot \cos x_{/2}}{\cos^2 x_{/2} - \sin^2 x_{/2}} \right)$$
$$y = \tan^{-1} \left(\frac{(\cos x_{/2} + \sin x_{/2})^2}{(\cos x_{/2} - \sin x_{/2})(\cos x_{/2} + \sin x_{/2})} \right)$$

$$y = \tan^{-1} \left(\frac{\cos^{x}/2 + \sin^{x}/2}{\cos^{x}/2 - \sin^{x}/2} \right)$$

$$y = \tan^{-1} \left(\frac{\frac{\cos^{x}/2 + \sin^{x}/2}{\cos^{x}/2}}{\frac{\cos^{x}/2}{\cos^{x}/2}} \right)$$

$$y = \tan^{-1} \left(\frac{1 + \tan^{x}/2}{1 - \tan^{x}/2} \right)$$

$$y = \tan^{-1} 1 + \tan^{-1} (\tan^{x}/2)$$

$$y = \tan^{-1} 1 + \frac{x}/2$$

$$\frac{dy}{dx} = 0 + \frac{1}{2}$$

SECTION - II

Q4. Attempt any THREE of the following (2 marks each)

01. Raghu , Madhu and Ramu started a business in partnership by investing ₹ 60,000 , ₹ 40,000 and ₹ 75,000 respectively . At the end of the year they found that they have incurred a loss of ₹ 24,500 . Find how much loss each one had to bear

SOLUTION

STEP 1 :

Loss will be shared in the

`RATIO OF THE INVESTMENT'

	RAHGU		MADHU		RAMU	
=	60,000	:	40,000	:	75,00	0
=	60	:	40	:	75	
=	12	:	8	:	15	TOTAL = 35

STEP 2 :

Raghu's share of loss = $12 \times \frac{12}{-35} \times \frac{700}{-35}$ = ₹ 8,400

700 Madhu's share of loss = $8 \times \frac{24,500}{-35}$ = ₹ 5,600

02. the wholesaler allows 25% trade discount and 5% cash discount . What will be the net price of an article marked at ₹ 1600

SOLUTION

List Price = ₹ 1,600 Less 25% T.D.: $\frac{25}{100} \times 1600$ - 400 Invoice Price = ₹ 1,200 Less 5% C.D.: $\frac{5}{100} \times 1200$ - 60 Net Selling Price = ₹ 1,140 (6 marks)

03. a salesman gets a commission of 6.5% on the total value of sales made by him and additional bonus of 0.25% on the excess of his sales over ₹ 16,000 . Find his total income on a turnover of ₹ 25,000

SOLUTION

Sale

= ₹25,000

a salesman gets a commission of 6.5% on the total value of sales made by him and additional bonus of 0.25% on the excess of his sales over \Box 16,000

∴ His total income

 $= \frac{6.5}{100}(25,000) + \frac{0.25}{100} (25,000 - 16,000)$ = $\frac{6.5}{100}(25,000) + \frac{25}{10000}(9,000)$ = 1,625 + 22.50= ₹ 1,647.50

04. the income of an agent remains unchanged though the rate of commission is increased from 5% to 6.25%. Find the percentage reduction in the value of business

SOLUTION

Let initial sales	=	₹ 100		
Rate of commission	=	5%		
: Commission	=	₹5		
Let the new sales	=	₹x		
Rate of commission	=	6.25%		
Rate of commission Commission	=	6.25% 6.25x		

Since the income of the broker remains unchanged

$$\frac{6.25x}{100} = 5$$

$$x = \frac{5 \times 10000}{625}$$

$$x = 80$$

$$\therefore \text{ new sales} = ₹ 80$$

Hence the percentage reduction in the value of the business is 20%

O1. After allowing 20% trade discount and 5% cash discount, a television set was sold for
 ₹ 9,120. What was the catalogue price of the set

SOLUTI	ON			
List Price	e		= ₹	100
Less 20%	% T.D.		-	20
Invoice I	Price		= ₹	80
Less 5%	C.D.		-	4
Net Selli	ng Price		= ₹	76
Now Whe	en;			
Net SP	= 76	;	Cat. Price	= 100
Net SP	= 🗆 9120	;	Cat. Price	$=\frac{120}{-9120} \times 100$
				/6 = ₹ 12,000

02. The ratio of number of boys and girls in a school is 3 : 2 . If 20 % of the boys and 30% of the girls are scholarship holders , find the percentage of students who are not scholarship holders

SOLUTION

Let boys = 3x & girls = 2x, Total = 5xScholarship holders = $\frac{20}{100} (3x) + \frac{30}{100} (2x)$ = $\frac{3x}{5} + \frac{3x}{5}$ = $\frac{6x}{5}$ Non scholarship holders = $5x - \frac{6x}{5} = \frac{19x}{5}$

Hence percentage number of students who are not scholarship holders

$$= \frac{19x}{5} \times 100$$
$$= \frac{19}{25} \times 100$$
$$= 76\%$$

(6 marks)

03. the ratio of prices of two houses are 2:3. Two years later when price of first house has increased by 30% and that of second house by ₹ 90,000 the ratio of prices becomes 5:7. Find original prices of two houses

SOLUTION

Let price of 1^{st} house = 2x

Price of 2^{nd} house = 3x

As per the given condition

$2x + \frac{30}{100}(2x)$	$= \frac{5}{7}$
3x + 90000	
$\frac{13x}{5}$	$= \frac{5}{7} (3x + 90000)$
91x	= 25 (3x + 90000)
91x	= 75x + 2250000
16x	= 2250000
x	= 140625
price of 1 st house	= 2(140625) = ₹ 2,81,250
Price of 2 nd house	= 3(140625) = ₹ 4,21,875

Q6. Attempt any TWO of the following (4 marks each)

01. Three persons A , B , C whose salaries amount to ₹ 21000 . Their savings are 20% , 30% and 40% of their salaries respectively . If their expenditures are in the 8 : 14 : 3 , find their respective salaries

SOLUTION

STEP 1

	А	В	С
Salary	x	у	Z
Savings	20x 100	<u>30y</u> 100	40z 100
Expenses	80x 100	70y 100	60z 100

STEP 2

their expenditures are in the 8 : 14 : 3

A's expense	=	8	B's expense	=	14
B's expense		14	C's expense		3
80x 100 70y 100	=	<u>8</u> 14	70y 100 60z 100	=	<u>14</u> 3
8x 7y	=	8 14	<u>7y</u> 6z	=	<u>14</u> <u>3</u>
<u> </u>	=	<u>1</u> 2	<u> </u>	=	41

STEP 3 : RATIO OF SALARIES

x	:	у	:	Z
1 ^{x2}	:	2 ^{x2}		
		4	:	1
2	:	4	:	1

STEP 4 SALARIES

TOTAL OF S	SALARIE	S	=	21,000		
A's salary	= -	2 7	×	21000	=	₹6,000
B's salary	= _	4 7	x	21000	=	₹ 12,000
C's Salary	= _	1	. x	21000	=	₹ 3,000

02. P and Q started a business with capitals in the ratio 4 : 3 . After 9 months P withdrew 25% of his capital and Q put in an equal amount in addition to his earlier capital . If at the end of the year P's share in the profit was ₹ 15,450 , find the total profit and Q's share of profit

SOLUTION

PARTNER's NAME	CAPITAL INVESTED	PE IN	RIOD OF VESTMENT
Р	₹4k	9	MONTHS
	- 23% ₹3k	3	MONTHS
Q	₹3k +k	9	MONTHS
	₹ 4k	3	MONTHS

STEP 1:

Profits will be shared in the 'RATIO OF PRODUCT OF CAPITAL INVESTED & PERIOD OF INVESTMENT'

	Р		Q	
=	4k x 9 + 3k x 3	:	3k x 9 + 4	łk x 3
=	36k + 9k	:	27k + 12k	
=	45k	:	39k	
=	15	:	13	TOTAL = 28
STEP 2	2_:			
P shar	e of profit		= ₹15,4	50
P's sh	are of profit		$= \frac{15}{28} x$	Total Profit

15,450	=	15 x Total Profit
		28
		1030

Total Profit = $\frac{15450 \times 28}{-15}$ = ₹ 28,840

- Q's share of profit = $13 \times \frac{13}{-28} \times \frac{13}{-28}$
 - = ₹13,390

O3. X and Y are partners in a business with their capitals as ₹ 2,00,000 and ₹ 3,00,000 respectively. Z wishes to join the business with a capital of ₹ 2,00,000 at the beginning of the financial year. They agree that the goodwill be taken as twice the average annual for the last three years. Last three years profits are ₹ 25,000, ₹ 40,000 and ₹ 40,000 respectively. Find the goodwill amount that Z would be required to pay X and Y separately

SOLUTION :

STEP 1 :

Ratio of Investment

_	Х		Y		Z
	2,00,000	:	3,00,000	:	2,00,000
=	2	:	3	:	2

STEP 2 :

Good will amount = 2 $\frac{25,000 + 40,000 + 40,000}{3}$ = 2 $\frac{1,05,000}{3}$ = 2 (35,000) = ₹ 70,000

STEP 3 :

Z's share in good will amount

STEP 4 :

Z has to pay above good will amount of ₹ 20,000 to X and Y in the ratio of their investment

Z pays to X =
$$2 \times 20,000 = ₹ 8,000$$

Z pays to Y = $3 \times 20,000 = ₹ 12,000$
5